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Abstract

The solution to the steady-state inverse problem can be expanded into a series of spline functions with weights adjusted to repro-
duce the observations within the observation error. The splines depend on the model spatial structure, the ground water flow model,
and the location of the observations. This representation of the solution, which is a rigorous and exact expansion, provides insight
into the form of the best estimate and explicitly shows how observations and the conceptual model may affect the solution.

Introduction
Consider flow in an aquifer, described by the partial differen-
tial equation
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where T is transmissivity, ¢ is hydraulic head, and N is recharge. T,
¢, and N may vary in space. Ground water flow models (e.g.,
McDonald and Harbaugh 1988) are available for the solution of the
forward problem: Find ¢ from T, N, and boundary conditions for ¢.
In hydrogeologic applications, an essential part of process simula-
tionis inverse modeling to determine these parameters given avail-
able data (Cooley 1977; Poeter and Hill 1997). Inverse methods in
hydrogeology are reviewed in Yeh (1986), Ginn and Cushman
(1990), Sun (1994), McLaughlin and Townley (1996), and others.

In this work, we will consider the geostatistical approach
(Kitanidis and Vomvoris 1983; Dagan 1985; Hoeksema and
Kitanidis 1984, 1985, 1989; Rubin and Dagan 1987a, 1987b;
Wagner and Gorelick 1989; Kitanidis 1995; Yeh et al. 1996, and oth-
ers) for the following inverse problem:

Estimate the transmissivity function T given N , boundary
conditions for ¢, and observations of local values of ¢ and per-
haps T .

The solution is presented in a form that is favorable for numer-
ical computations and reveals how the observations and the geo-
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statistical structure affect the solution. Each observation intro-
duces a basis function or “spline,” and the estimate of the unknown
is obtained through superposition of such splines. Each of these
splines depends on the sensitivity of an observed quantity with
respect to the unknown function and the generalized covariance (or
variogram) in the geostatistical model. An example is presented to
illustrate the application of these concepts.

Overview of Approach

Inverse problems cannot be solved by using observations
alone, because observations typically do not provide information suf-
ficient for a unique and stable solution. It is essential to attach infor-
mation about the degree of variability and spatial continuity (known
as “structure”) of the unknown function. It is the structure that
allows us to obtain a stable solution to an inverse problem. The geo-
statistical approach is a practical approach to combine observations
and structure for the solution of an inverse problem. The unknown
function is treated as random, because it is only partially known,
and structure is described through the mean and covariance.

The structure of the unknown logtransmissivity (i.e., loga-
rithm of transmissivity) function s(x) = In (T (x)) is represented
through functions with a few adjustable parameters. First, the
mean function (also known as drift) that is expanded as

= XX 0B @

where X; (x), for i = 1, ..., p, are known functions and 3, are
unknown parameters. A common case is that of a constant but
unknown mean: p= 1, X, (x) = 1, and thus p (x) =f, . Second, the
covariance function, usually a function of the separation vector,
q (x—x'; 8) where 0 are a few parameters (such as variance and
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correlation length) that may need to be adjusted though data analy-
sis. In the inverse modeling presented at the end of this paper, the
parameters 6 will be estimated using the cross-validation method
in Kitanidis (1995).

For notational convenience, the n head and logtransmissivity
observations are arranged in a vector, y. Similarly, the unknown func-
tion has been discretized into an m by one vector, s. Typically, m
is much larger than n. The structure of s is described through a mean
vector and a covariance matrix. The mean, following Equation 2,
is parameterized into

p=Xp 3

where  is the p by one vector of unknown parameters and X is an
m by p known matrix, of rank p. The covariance matrix Q is m by
m with ij-th element given through the covariance function, Qij =
q (X~ X3 ). The X and Q matrices depend on the assumed degree
of variability and spatial correlation of the unknown function s (x).
For more information, see Kitanidis (1995, 1997).

The relation between observations and unknowns is given by
the observation equation, with the general form

y=h(s) +v 4)

The first term, h (s), is the relation between the observations (e.g.,
head at a certain point) and the unknown function (logtransmis-
sivity). The second term, v, represents observation error and is
treated as a random vector with zero mean and covariance matrix
R. A priori, s and v are uncorrelated.

In the quasilinear geostatistical approach (Kitanidis 1995),
the best estimate § is obtained from the minimization of the
weighted least squares criterion

C=(—-h@E)'R'(y-h()) +5"Gs (5)
where T indicates matrix transpose and
G = Q—l - Q*lX (XTQ~lx)—IXTQ——1 (6)

The first term in Equation 5 represents the objective of reproduc-
ing the data within their measurement error and the second term
depends on the geostatistical structure. Note that there is no unique
minimum if the second term is dropped.

The best estimate § must satisfy the normal equation, obtained
by setting the derivative of C with respect to s equal to zero,

—(y—h@)'RTH+8'G=0 (7)

i
9s;
is typically a large system of nonlinear equations.

where H is n by m matrix with H;; = . The normal Equation 7

Consider, first, the case that the observation equation is linear
(i.e., the observations are a linear function of s), i.e.,

h(s) = Hs (8)
the normal equation becomes

—(y—-H)TRTH+§TG=0 )

The solution is found from the solution of
[H'R"'H + G]§ = H'R 'y (10)
However, this expression is unsatisfactory because it involves
solving systems of order of m, where m can be an arbitrarily large
number and the matrix of coefficients is nonsparse.
In our approach, the best estimate is given by

§ = QH'E + Xb (1)

where the n by one vector & and the p by one vector b are found from
the solution of a system of n + p equations with n + p unknowns

[(Hif H(f( } E] - m (12)

S = HQH" + R (13)

where

Solving a single system of n + p equations is much preferable
to solving a system of m equations, because typically m>>n.In
the examples to be presented later, n =50, p=1 or 3, and m =1200.

In the more general case that the observation equation is non-
linear, let § be close to the optimal §. (In the splines presented
later, § will be the true logtransmissivity.) The observation function
may be linearized about §, making the normal Equation 7 appear as
follows:

—(y—h@E -HGE—-3)"RT'H+8"G=0 (14)

or
-G -H)TR'H+8TG =0 (15)

where
y=y— h(§) + HS§ (16)

Equation 15 has the same form as Equation 9. Thus, the solution is

§=Xb+ QH'E a7
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Figure 1. Schematic of flow domain and discretization.

755



sensttivity matrix of head at x=0.4875 y=0.5625

a1

dhids

i

T 5y T !

sensitivity matrix of head at x=0.8625,y=0.2125

x 107

Figure 2. Sensitivity of head at two locations with respect to logtransmissivity. Uniform logtransmissivity, no sources or sinks.

where the § and b coefficients are found by solving a single linear
system of n + p equations:

[(Hif HoX ] [E] B m (18)

For weakly nonlinear problems, the Gauss-Newton method of suc-
cessive linearization is the best iterative method for finding the best
estimate. Starting with an initial guess §, the observation equation
is linearized, Equation 16, and the guess is updated by applying
Equations 17 and 18. The procedure is repeated until convergence
is achieved.

Consider the best estimate given through Equation 17. This vec-
tor is a superposition of n + p vectors multiplied with appropriate
coefficients. The n+p vectors are the n columns of matrix QHT and
the p columns of matrix X. The coefficients are the elements of §
and b, which are found by solving Equation 18. The geostatistical
estimate of the unknown function is thus obtained by superposing
n+ p basis functions or splines with weights adjusted to properly
reproduce the data. The splines depend on the observations (type
and location) and the assumed geostatistical structure.

The geostatistical structure must be selected on the basis of prior
information about the unknown function as well as from the analy-
sis of the data used in the inversion, The objective of this work is
to shed light on the question of how structure and observations affect
the shape of the splines that are used in the geostatistical solution.
This will be achieved by showing plots of splines used in repre-
sentative examples.

Applications

Consider the rectangular flow domain shown in Figure 1. The
left and right boundaries have constant head and the other two are
no-flux boundaries. All such cases can be simplified further through
nondimensionalization. Distances are normalized by dividing by the
length of the domain in the x direction. After this nondimension-
alization, the domain is 1 by L,, and in the applications presented
in this work L, = 0.75 . The head is made dimensionless so that the
head is 1 at the left boundary and O at the right boundary. The
domain is subdivided into m uniform cells with dimensions Ax by
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Ay . The logtransmissivity in cell i is s, numbered in a row-wise
1
fashion, as illustrated in Figure 1. In the applications, Ax = Ay =—

40
and the grid has 1200 cells.

The forward problem is solved numerically using a cell-cen-
tered finite-difference scheme identical to the scheme used in the
USGS’s popular MODFLOW computer model (McDonald and
Harbaugh 1988). The well-known adjoint-state method (Chavent
etal. 1975; Neuman 1980) is used to find the sensitivity of a head
value (at the center of a cell) with respect to all the transmissivity
cells. The sensitivity matrix with respect to the logtransmissivity
is then determined through application of the chain rule,

dh dh dT  dh
= = T (19)
d(InT) ~ dT (inT) ~ dT

Application 1

We will use the expansion of the best estimate § into splines,
Equation 17, for a given logtransmissivity and recharge. The sim-
plest splines are for the case of uniform logtransmissivity (equal
to four in this example) in a domain without recharge or wells. For
example, analytical small-perturbation approximations (e.g.,
Kitanidis and Vomvoris 1983; Dagan 1985) use the splines derived
for constant transmissivity without sources or sinks. In this simple
case, it is easier to see how the sensitivity functions and the splines
associated with observations depend on location and the assumed
structure of the unknown.

Figure 2a shows the sensitivity of head at x = 0.4875,
y = 0.5625 to the logtransmissivity function (i.e., the logtrans-
missivity in every cell). Both the gridded surface and its contour
map (appearing on the lowest horizontal plane) are shown. The sen-
sitivity tends to zero away from the head location and its most sig-
nificant nonzero values are symmetrically located about the head
position in the direction of flow. It is worth pointing out that the value
of the sensitivity function is grid dependent, because it represents
the sensitivity with respect to the logtransmissivity of a cell, and thus
changes with the cell size. What matters is the shape of the func-
tion; by varying the grid size, we found that the shape of the func-
tion is not affected much by discretization. Figure 2b shows the sen-
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Figure 3. Splines of head at two locations when the exponential covariance function is used with integral scale equal to Ax = 0.025. Uniform log-

transmissivity, no sources or sinks.
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Figure 4. Splines of head at two locations when the linear generalized covariance function is used. Uniform logtransmissivity, no sources or sinks.

sitivity of head at x = 0.9625, y = 0.2125, near a fixed-head bound-
ary. Due to the boundary proximity, the head is not sensitive to
values of the logtransmissivity away from the head location.

The sensitivity functions are identical to the splines used in the
inverse problem when the pure nugget effect covariance is used,
i.e., constant mean, constant variance, and no correlation between
cell values. One expects that the best estimates obtained from an
inverse that uses a pure nugget effect model could be spiky and the
results might appear “noisy.” A potential advantage of this model
is that it does not force any smoothing and thus may allow the iden-
tification of small-scale features or abrupt changes in the log-
transmissivity. The difficulty is that it is hard to distinguish between
actual features and noise.

Figures 3a and 3b show the head splines when the exponential
covariance is used,

Q; = exp (— [ = ; ] ) (20)

where Ix; — x| is the distance between cell centers i and j , with spa-
tial coordinates x; and x; and 1 is the integral scale. The spline

shapes, shown in Figures 3a and 3b, differ considerably from the
pure nugget effect splines, shown in Figures 2a and 2b, despite the
fact that a small 1 = A, value was used. The larger the value of 1, the
smoother the spline, which tends to produce a smoother best esti-
mate.

Figures 4a and 4b show the head splines when the linear (gen-
eralized) covariance is used,

Qij = = lxi - le 21

The splines are smooth and appear quite different from the sensi-
tivity functions. Note that in the pure nugget, exponential, and
linear models, the X matrix is m by 1,

5= |! (22)
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Figure 5. Splines of head at two locations when the thin-plate generalized covariance function is used. Uniform logtransmissivity, no sources
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A model applicable when there is a linear drift is the thin-plate
generalized covariance,

Q; = ‘Xi - X.j‘leg (\Xi - X.,b (23)

The X matrix in this case is m by 3,

Lox oy
x= |l o 4)
1 Xm yln

where (x;, y;) are the spatial coordinates of the center of cell i.

Figures 5a and 5b show the head splines associated with this
model, which differs even more from the sensitivity matrix. When
using this model, a head observation may affect logtransmissivity
estimates at large distances.

In all cases, it is the spline geometric shape and not values that
matter in determining the best estimate, because in the solution
every spline is multiplied by a weight & that may be small or
large, positive or negative.

Application 2

The shape of the head splines is affected by the presence of dis-
tributed recharge or wells. For illustration, consider the case that
N = 0.2 uniformly over the domain except at two cells, represent-
ing production wells, where it is —100 . The wells are at blocks with
center coordinates (0.1125,0.5125) and (0.6125,0.5125). The value
of InT is four, just as in Application 1. Figure 6 depicts the head in
this case.

Figure 7a and 7b show the head sensitivity functions at the same
two locations as in the previous application. The recharge and, more
notably, the wells have affected the sensitivity functions. The head
may thus be sensitive to values of the logtransmissivity that are
strategically located with respect to pumping wells. The best esti-
mates obtained from an inverse that uses a pure nugget effect
model could be spiky:.
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Figure 6. Head for uniform transmissivity, uniform recharge, and
two production wells.

Figures 8a and 8b depict the head splines when the exponen-
tial covariance is used. Although considerably smoother than the sen-
sitivity functions, the effect of the wells is still pronounced.

Figures 9a and 9b show the head splines with the linear model.
The splines are smooth, and the effect of the wells is not immedi-
ately obvious.

Figures 10a and 10b show the head splines associated with the
thin-plate model. They are smooth and, again, one can see that a head
measurement may affect the logtransmissivity estimate at large dis-
tances.

Application 3

This is the same as Application 2 with the addition of variable
logtransmissivity, shown in Figure 11. Figure 12a and 12b show the
head sensitivity functions at the same two locations as in the pre-
vious applications. The sensitivity functions have many features
now, reflecting the presence of the wells and the permeable zone.
The complexity of the sensitivity functions is interesting and
reveals how informative an observation may be about hetero-
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Figure 7. Sensitivity of head at two locations with respect to logtransmissivity. Uniform logtransmissivity.
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Figure 10. Splines of head at two locations when the thin-plate generalized covariance function is used. Uniform logtransmissivity.

Figure 11. Variable logtransmissivity, used in Application 3.

geneities. For example, it is interesting to note that the observation,
whose sensitivity is plotted in Figure 12a, is not helpful per se in
the detection of the permeable zone. However, the best estimate is
computed from the superposition of many splines with appropri-
ately selected coefficients; thus, the right combination of head
observations may lead to the detection of the permeable zone.

Figures 13 and 13b depict the head splines using the exponential
covariance; Figures 14a and 14b show the head splines using the
linear (generalized) covariance; and Figures 15a and 15b show the
head splines using the thin-plate model. The splines are dramati-
cally affected by the assumed structure (covariance function). As
will be discussed later, the smoothness of the splines used in the lin-
ear and thin-plate models may be advantageous.

How do such differences in splines affect the computed best
estimate? The answer depends on the specifics of the case. The only
general conclusion is that the more observations, the more similar
the final estimates. In fact, when every head value is measured, all
methods give the same result, regardless of using different splines.

We will show the best estimates for the case when the head is
measured at 50 locations, shown in Figure 16. The estimates are
obtained using a Gauss-Newton method with 6 (parameter multi-
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plying each of the covariance functions used in the examples)
computed vsing the method in Kitanidis (1995). The estimates
are shown in Figures 17 through 19, for structures given by the
exponential, linear, and thin-plate models. The exponential model
estimate is somewhat bumpy (because of the small integral scale
used) but captures the main feature of the flow domain, that is, the
permeable zone near the center. The linear model estimate is rela-
tively flat and the thin-plate estimate is relatively smooth and
somewhat wavy. The thin-plate spline is expected to work well for
logtransmissivity functions that have continuous first derivatives,
a condition not met in this example.

In this case, the linear model estimate is more accurate than the
other two estimates. It is interesting to note that the simplicity of
the linear model splines has not prevented the identification of
the most important real site features; at the same time, the estimate
is free of features that appear in the exponential model estimate but
are not real. However, all three solutions share common charac-
teristics: They are able to identify the thick permeable zone, but not
the thinner interior one. The reason is that when head observations
are used, one cannot estimate logtransmissivity features that are
smaller than the average distance between head observations.
Typically, small-scale characteristics of the logtransmissivity func-
tions are smoothed out. Introducing a weak spatial correlation is gen-
erally not a good approach to identify small-scale characteristics.
For example, in the exponential model with 1 = Ax, the result is a
bumpy solution, most of the bumps being spurious features and not
real site characteristics.

Concluding Remarks

The best estimate of the logtransmissivity that is obtained
from the solution of an inverse problem is a smoothed version of
the actual logtransmissivity. The estimate can be expanded into a
series of spline functions with appropriate weights, Equation 17.
This expansion is an exact representation, unlike ad hoc approxi-
mations used in other approaches. The shape of the splines turns
out to depend on the geostatistical structure, the flow model, and
the location and type of observations. For example, the spline
associated with a head observation is different from the spline
associated with a logtransmissivity observation. These splines
show how an observation affects the estimate and thus are useful
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Figure 19. Best estimate of logtransmissivity using the thin-plate
model.



in understanding what measurements are responsible for the iden-
tification of a given feature or in considering what measurements
to collect next.

An interesting feature is that the geostatistical structure has a
major effect on the shape of the individual splines. The stronger the
spatial continuity, the smoother the splines. Additionally, there is a
fundamental trade-off between riding the estimate of spurious vari-
ability and sacrificing some of the resolution of the actual log-
transmissivity. The challenge is to find the degree of spatial conti-
nuity and smoothness that strikes an acceptable balance between
suppressing errors and identifying actual features of spatial vari-
ability.
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